skip to main content


Search for: All records

Creators/Authors contains: "Javanmard, Adel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Performance of classifiers is often measured in terms of average accuracy on test data. Despite being a standard measure, average accuracy fails in characterising the fit of the model to the underlying conditional law of labels given the features vector (Y∣X), e.g. due to model misspecification, over fitting, and high-dimensionality. In this paper, we consider the fundamental problem of assessing the goodness-of-fit for a general binary classifier. Our framework does not make any parametric assumption on the conditional law Y∣X and treats that as a black-box oracle model which can be accessed only through queries. We formulate the goodness-of-fit assessment problem as a tolerance hypothesis testing of the form H0:E[Df(Bern(η(X))‖Bern(η^(X)))]≤τ where Df represents an f-divergence function, and η(x), η^(x), respectively, denote the true and an estimate likelihood for a feature vector x admitting a positive label. We propose a novel test, called Goodness-of-fit with Randomisation and Scoring Procedure (GRASP) for testing H0, which works in finite sample settings, no matter the features (distribution-free). We also propose model-X GRASP designed for model-X settings where the joint distribution of the features vector is known. Model-X GRASP uses this distributional information to achieve better power. We evaluate the performance of our tests through extensive numerical experiments.

     
    more » « less
  2. Free, publicly-accessible full text available July 23, 2024
  3. Free, publicly-accessible full text available July 23, 2024
  4. Free, publicly-accessible full text available July 23, 2024
  5. Despite the wide empirical success of modern machine learning algorithms and models in a multitude of applications, they are known to be highly susceptible to seemingly small indiscernible perturbations to the input data known as \emph{adversarial attacks}. A variety of recent adversarial training procedures have been proposed to remedy this issue. Despite the success of such procedures at increasing accuracy on adversarially perturbed inputs or \emph{robust accuracy}, these techniques often reduce accuracy on natural unperturbed inputs or \emph{standard accuracy}. Complicating matters further, the effect and trend of adversarial training procedures on standard and robust accuracy is rather counter intuitive and radically dependent on a variety of factors including the perceived form of the perturbation during training, size/quality of data, model overparameterization, etc. In this paper we focus on binary classification problems where the data is generated according to the mixture of two Gaussians with general anisotropic covariance matrices and derive a precise characterization of the standard and robust accuracy for a class of minimax adversarially trained models. We consider a general norm-based adversarial model, where the adversary can add perturbations of bounded ellp norm to each input data, for an arbitrary p greater than one. Our comprehensive analysis allows us to theoretically explain several intriguing empirical phenomena and provide a precise understanding of the role of different problem parameters on standard and robust accuracies. 
    more » « less
  6. null (Ed.)
  7. Despite breakthrough performance, modern learning models are known to be highly vulnerable to small adversarial perturbations in their inputs. While a wide variety of recent adversarial training methods have been effective at improving robustness to perturbed inputs (robust accuracy), often this benefit is accompanied by a decrease in accuracy on benign inputs (standard accuracy), leading to a tradeoff between often competing objectives. Complicating matters further, recent empirical evidence suggest that a variety of other factors (size and quality of training data, model size, etc.) affect this tradeoff in somewhat surprising ways. In this paper we provide a precise and comprehensive understanding of the role of adversarial training in the context of linear regression with Gaussian features. In particular, we characterize the fundamental tradeoff between the accuracies achievable by any algorithm regardless of computational power or size of the training data. Furthermore, we precisely characterize the standard/robust accuracy and the corresponding tradeoff achieved by a contemporary mini-max adversarial training approach in a high-dimensional regime where the number of data points and the parameters of the model grow in proportion to each other. Our theory for adversarial training algorithms also facilitates the rigorous study of how a variety of factors (size and quality of training data, model overparametrization etc.) affect the tradeoff between these two competing accuracies. 
    more » « less